84 research outputs found

    Geometry of intensive scalar dissipation events in turbulence

    Full text link
    Maxima of the scalar dissipation rate in turbulence appear in form of sheets and correspond to the potentially most intensive scalar mixing events. Their cross-section extension determines a locally varying diffusion scale of the mixing process and extends the classical Batchelor picture of one mean diffusion scale. The distribution of the local diffusion scales is analysed for different Reynolds and Schmidt numbers with a fast multiscale technique applied to very high-resolution simulation data. The scales take always values across the whole Batchelor range and beyond. Furthermore, their distribution is traced back to the distribution of the contractive short-time Lyapunov exponent of the flow.Comment: 4 pages, 5 Postscript figures (2 with reduced quality

    Multigrid Methods in Lattice Field Computations

    Full text link
    The multigrid methodology is reviewed. By integrating numerical processes at all scales of a problem, it seeks to perform various computational tasks at a cost that rises as slowly as possible as a function of nn, the number of degrees of freedom in the problem. Current and potential benefits for lattice field computations are outlined. They include: O(n)O(n) solution of Dirac equations; just O(1)O(1) operations in updating the solution (upon any local change of data, including the gauge field); similar efficiency in gauge fixing and updating; O(1)O(1) operations in updating the inverse matrix and in calculating the change in the logarithm of its determinant; O(n)O(n) operations per producing each independent configuration in statistical simulations (eliminating CSD), and, more important, effectively just O(1)O(1) operations per each independent measurement (eliminating the volume factor as well). These potential capabilities have been demonstrated on simple model problems. Extensions to real life are explored.Comment: 4

    A Multilevel Algorithm for the Minimum 2-sum Problem

    Full text link

    Multigrid Analysis of Scattering by Large Planar Structures

    Get PDF
    Abstract Fast iterative analysis of two-dimensional scattering by a large but finite array of perfectly conducting strips requires efficient evaluation of the electric field. We present a novel multigrid algorithm that carries out this task in CN computer operations, where C depends logarithmically on the desired accuracy in the field, and N is the number of spatial gridpoints. Numerical results are presented, and extensions of the algorithm are discussed
    • …
    corecore